
Abstract. The group function theory described in the
title paper of McWeeny is overviewed by pointing out its
in¯uence on di�erent ®elds of theoretical chemistry, in
particular its serving as a general framework for various
forms of building blocks and local treatments of
extended systems.
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1 Introduction

In the middle of the 1950s the laboratory of Professor
Slater at MIT gathered several brilliant young theoret-
ical chemists to work on the derivation of matrix
elements of the Coulombic Hamiltonian with respect
to arbitrary Slater determinants. This research activity
led to some very important general results, connected
essentially to the names P.-O. LoÈ wdin and
R. McWeeny, both of whom were working indepen-
dently along similar lines. LoÈ wdin published his results
about density matrices, natural orbitals as well as on the
matrix elements between nonorthogonal Slater determi-
nants in an internal report [1] in 1954 and published it in
Physical Review [2] in 1955. McWeeny's technical report,
which summarized his lectures given in May 1954,
appeared in May 1955, followed by a series of papers in
the Proceedings of the Royal Society in 1956. However,
the most signi®cant publications on this subject followed
only a few years later: the title article [3] in 1959, as well
as an exhaustive presentation of the density matrix
formalism [4] in 1960. As McWeeny noted in the preface
of the 1955 technical note [5], the objective of this work
was twofold. On the one hand, there was a ``tendency

towards elaboration and codi®cation of existing meth-
ods in preparation for electronic digital computation'',
but on the other there was ``an equal need to keep an
underlying physical picture.'' LoÈ wdin's contribution to
density matrix theory has been proven to be essential,
and this is the subject of another perspective in this New
Century Issue. While LoÈ wdin focussed mainly on the
interpretation of the one-particle density matrix (e.g.
natural orbitals), McWeeny gave a detailed interpretat-
ion of the physical meaning of two-particle density
matrices. This analysis has been reiterated in McWeeny's
excellent textbooks [6, 7], which have educated several
generations of theoretical chemists.

In spite of the primordial importance of density
matrix theory, in the present account I would like to
concentrate on another closely related result of the
title paper: the theory of generalized product functions.
This theory beautifully demonstrates that fundamental
chemical concepts are not necessarily contradictory to
rigorous quantum mechanics. On the contrary, such
concepts can be advantageously exploited for the design
of powerful approximation schemes. In fact, McWeeny
has always insisted on the importance of a conceptual
approach to the problems of quantum chemistry, as
witnessed, for example, by his work on two-particle
density matrices [4] or on the interpretation of dispersion
energies in terms of propagators [8].

Chemists have always refused to consider each indi-
vidual molecule as a completely new object and have
tried to rationalize physical and chemical properties in
terms of basic building blocks. The experience of more
than a century supported the existence of transferable
structural units in molecules, such as bonds, functional
groups, chromophores, etc. The idea of functional
groups or chromophores also implies that only a small
part of the whole molecule, which is responsible for the
chemical and spectroscopic properties, is active, while
the remaining parts of the molecule behave as spectator
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groups. Standard methods of quantum chemistry do not
take into account this distinction and they usually treat
all the electrons of the system on an equal footing.

McWeeny proposed a generalization of the usual
antisymmetrized product of one-electron wave functions
in terms of an antisymmetrized product of many-elec-
tron group functions. The extreme elegance of his for-
malism lies in the fact that it is able to encompass in a
natural way the usual molecular orbital theory, the
method of geminals, on the one hand, and on the other
hand, it opened the way for di�erent methods where
chemically identi®ed electron groups are treated sepa-
rately.

2 Generalized product functions

A generalized product function, as de®ned in the
title paper, is an antisymmetrized product of the
UAa�1; . . . ;NA� individually antisymmetric wave func-
tions describing the groups A in their electronic state a:

UAa;Bb;...�1; 2; . . . ;N�
� Â0UAa�1; . . . ;NA�UBb�NA � 1; . . . ;NA � NB� . . . :

�1�
The intergroup antisymmetrizer, Â0 permutes electrons
between di�erent groups. The wave function (Eq. 1) is a
straightforward generalization of a Slater determinant:
the one-electron wave functions (spin-orbitals) are
replaced here by NA-electron wave functions.

As a generalization of the con®guration interaction,
the total wave function can be written as a linear com-
bination of generalized products of the type (Eq. 1)

W�1; 2; . . . ;N� �
X
a;b;...

Ca;b;...UAa;Bb;...�1; 2; . . . ;N� : �2�

Although in a strict sense, this form is inappropriate
for expanding the exact wave function, which should
contain all the possible partitions of the electrons among
the individual groups, the wave function (Eq. 2) seems
to be a good initial approximation to describe systems
composed of loosely coupled electron groups.

McWeeny assumed that the group functions are
completely arbitrary, i.e. they can correspond to highly
correlated accurate wave functions of the individual
groups. The only restriction, imposed upon the group
functions was the strong orthogonality condition:Z

ds1URr�1; . . . ;NR�USs�1; . . . ;NS� � dRSdrs ; �3�

i.e. it was required that the overlap integral, taken with
respect to any of the electron (space and spin) coordi-
nates, should vanish. The strong orthogonality condition
simpli®es tremendously the formalism. Although in
several cases it is quite straightforward to respect it
without losing accuracy, this restriction proved to be
somewhat frustrating in several physical applications
where it had to be relaxed [9].

By the virtue of the strong orthogonality condition
the two-particle density matrix of the total system could

be expressed in terms of the one- and two-particle den-
sity matrices of the individual groups, which is one of the
central results of the title paper [3]. This allowed the
derivation of the analogs to the Slater rules for gener-
alized product functions, and the matrix elements of the
molecular Hamiltonian could be written in terms of
intergroup Coulomb and exchange operators JS�i�
and KS�i�. The e�ective Hamiltonian of a group is

HR
eff�1; 2; . . . ;NR�

�
XNR

i�1

�
hR�i� �

X
S�6�R�
�JS�i� ÿKS�i��

�
�
XNR

i<j

g�i; j� : �4�

The local Brillouin theorem of the usual self-consistent-
®eld (SCF) theory was also generalized to the following
form

hUAajHA
effjUAa0 i � 0 ; �5�

corresponding to the physical condition that the ®rst-
order polarization energy of the total system vanishes.
The above statement is equivalent to a variational
principle applied to the group energies, i.e. the expecta-
tion values of the e�ective group Hamiltonians (Eq. 4).
Thus the electronic SchroÈ dinger equation of the full
extended system can be replaced by a set of e�ective
equations of lower dimensionality for the group func-
tions which are coupled by the intergroup Coulomb and
exchange potentials.

The above ingredients of the theory would, in prin-
ciple, allow us to identify various types of electron
groups, relying on our physical or chemical intuition to
design an e�cient procedure for the treatment of large
systems, paying special attention to those groups where
the most important chemical events take place. Even if
the optimization of the group functions according to the
principles described above may seem to be straightfor-
ward, one should solve a crucial technical problem: how
to maintain the (strong) orthogonality during their
variation. The response to this question depends
strongly on the nature of the electron groups.

3 Some speci®c applications of the group function method

The necessity of partitioning the electrons in a molecule
into core and valence groups was recognized in the
early days of quantum chemistry. A similar separation
seemed to be necessary for planar molecules where the
mobile p electrons are responsible for most of the
spectroscopic properties and chemical reactivity. It was
only after several decades of the successful use of the
HuÈ ckel method and with the appearance of more
sophisticated SCF-type p-electron approximations that
some attempts were made at establishing the funda-
mental theoretical basis of these methodologies relating
them to ab initio calculations. In fact, the treatment
of the r-p separation by Lykos and Parr [10] was a
precursor to the group function idea. In this special
case, the strong orthogonality condition is automati-
cally ful®lled due to the di�erent symmetries of these
two groups of electrons.
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In semiempirical molecular orbital theories one
assumes a formal orthogonality of the underlying atomic
orbital basis, which makes it relatively straightforward
to implement group function theory. One can cite the
PCILO (Perturbative con®guration interaction with
localized orbitals) method [11], which uses strictly
localized two-electron bond orbitals to construct a
zeroth-order wave function and perturbational correc-
tions to describe the interaction between them. In the
spirit of group function theory, many-electron groups
are used to describe delocalized systems, such as p
fragments in the extended PCILO method [12]. SurjaÂ n
[13] developed an elegant formalism in terms of strictly
localized two-electron wave functions, called geminals.
The zeroth-order wave function, which is an antisym-
metric product of strictly localized geminals, can be
systematically improved by many-body perturbation
techniques. Since each bond is described locally at a ``full
con®guration interaction'' level, well-localized chemical
reactions (e.g. bond breaking) can be e�ciently repre-
sented with such wave functions.

The separated electron pair concept, which was ®rst
proposed by Hurley et al. [14] and which was later re-
ferred to as antisymmetrized product of strongly or-
thogonal geminals (APSG) [15], is also a special case of
the group function concept. This kind of wave function
is qualitatively correct at all internuclear distances and
it can be improved either perturbationally [16, 17] or
variationally [18].

In the above-mentioned cases the strong orthogonality
condition could be ful®lled. In fact the simplest way to
ensure strong orthogonality is to construct the individual
group functions from orbitals taken from di�erent sets
which are orthogonal to each other [19]. Although an
orthogonalization of the basis set is always possible, it is
not a solution for the physicallymost attractive situations,
where one would like to bring together separate systems,
each described by their own wave functions, to form a
composite system and estimate their interaction energy.
Similarly, there would be no advantage in optimizing the
wave functionof the active electrons in the e�ective ®eld of
the spectator groups if, as a consequence of the orthogo-
nalization, we were constrained to work with the whole
one-electron basis set.

The relaxation of the strong-orthogonality constraint
was studied ®rst by McWeeny and Sutcli�e [9], who
derived density matrix expressions for the four-electron
case. The general formulation for arbitrary closed shell
groups [20] allowed the development of a general theory
of intermolecular potentials at short and intermediary
distances. In such weakly interacting systems it is not
necessary to relax the electron groups in the ®eld of their
partners: the electrostatic, polarization and dispersion
energy components are calculated from the isolated
wave functions of the components.

In the case of more strongly interacting groups it is
necessary to optimize the individual groups in the ®eld
of the others. This is typically the case for the valence
electrons in the ®eld of the atomic cores, for a functional
group in the ®eld of the substituents or a defect sub-
system in an ionic or molecular crystal. In the course of
such optimizations one should take precautions in order

to avoid a variational collapse, i.e. the partial occupation
of the subspace belonging to the partner electron group.

A possible solution to this problem was given by
Kleiner and McWeeny [21] in the case of the core±va-
lence separation. They derived an ab initio e�ective core
potential, obtained directly from the core wave function,
which can be brought to a form which is analogous to
the Phillips±Kleinmann-type core pseudopotentials. This
line of thought has been pursued in a systematic manner
by several authors. For example, Huzinaga's building-
block equations [22] allow one to obtain the Hartree±
Fock orbitals for one subsystem, provided that the
solutions for the other subsystems are known. Applying
a series of approximations, ab initio model potentials
can be derived for di�erent situations, such as atomic
cores [23, 24] spectator groups [25±28], or ions or mol-
ecules embedded in crystals [29±31].

Yet another way of circumventing the nonorthogo-
nality problem is by replacing the strong-orthogonality
condition by the strong-biorthogonality condition, i.e.
using a biorthogonal basis to preserve the formal sim-
plicity of the density matrix and e�ective group energy
expressions for the composite system. Nevertheless, the
group function variational principle cannot be applied in
an identical fashion, and further constraints should be
applied to restrict each group to its own variational
subspace. Mehler [32] proposed imposing the condition
that the intergroup overlap integrals remain constant
throughout the variation of the group orbitals. The ef-
fective group equations he obtained are closely related to
Huzinaga's equations as well as to the Adams±Gilbert
equations used in obtaining a priori localized orbitals.

Group function theory may serve as a valuable guide
in establishing a ®rm basis for quantum mechanical
solvent e�ect theories. Microscopic solvent e�ect models
can be introduced by arguing in terms of solute and
solvent groups and by considering the solvent molecules
as spectator groups [33]. The microscopic reaction ®eld
and some related models can also be derived from a
perturbational ansatz applied to the coupled set of sol-
ute±solvent group function equations [34]. The status of
some heuristic hypotheses used in the derivation of the
energy derivative expressions of the solvent cavity model
has been analyzed in light of the theory of generalized
product functions [35].

4 Perspectives

There are essentially two possible ways to invoke
chemical concepts such as atoms, functional groups,
etc., in theoretical chemistry. The a posteriori way
consists of performing an analysis of the wave function
and extracting the properties associated with some
rigorously de®ned objects corresponding to such sub-
systems. For example, the work of Bader [36], who
succeeded in formulating the concept of the atoms in
molecules in a quantum mechanically well-founded
manner, exempli®es this kind of approach. The a priori
way of using chemical concepts, i.e. to postulate the ex-
istence of such chemical fragments or building blocks,
while still remaining on the solid ground of rigorous
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quantum mechanics, seems to be even more di�cult.
McWeeny's pioneering work on group functions demon-
strated that such a plan might be conducted with success.

The ever-growing interest in accurate quantum
chemical treatments of extended systems such as mac-
romolecules and crystals would greatly bene®t from
models which are based on well-de®ned basic hypotheses
and a controlled hierarchy of approximations. Group
function theory o�ers such a framework and continues
to be a reference in the design of new models ranging
from various ab initio model potentials applied to core
electrons, spectator groups, embedded atoms or solvent
molecules, to local space treatments and even to mixed
quantum±classical models. I am convinced that in the
future the empirical ingredients of these various models
will be replaced by parameters which are rigorously re-
lated to high-quality wave functions of the fragments
constituting the complete system. There are some en-
couraging results in this respect [37], but still a great deal
of work remains to be done.
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